
University of Mannheim
Laboratory for Dependable Distributed Systems

Bachelor Thesis

Design and Implementation of
a Forensic Documentation Tool

for Interactive Command-line Sessions
Tim Weber

February 23, 2010

Primary examiner: Prof. Dr. Felix C. Freiling
Secondary examiner: Dipl.-Inf. Andreas Dewald
Supervisor: Prof. Dr. Felix C. Freiling

Bachelorstudiengang Software- und Internettechnologie

Abstract

In computer forensics, it is important to document examination of a computer
system with as much detail as possible. Many experts use the software script to
record their whole terminal session while analyzing the target system. This thesis
shows why script’s features are not sufficient for documentation that is to be used in
court. A new system, forscript, providing additional capabilities and mechanisms
will be designed and developed in this thesis.

i

Contents
1 Introduction 1

1.1 Background: Computer Forensics . 1
1.2 Tasks . 2
1.3 Results . 2
1.4 Outlook on the Thesis . 2

2 script 3
2.1 Purpose . 3
2.2 Mode of Operation . 3
2.3 Invocation . 3
2.4 File Formats . 4

2.4.1 Typescript . 4
2.4.2 Timing . 4

2.5 Disadvantages . 5

3 Design of forscript 5
3.1 File Format . 5

3.1.1 Input Chunks . 6
3.1.2 Metadata Chunks . 6
3.1.3 Properties of the File Format 6

3.2 Metadata Chunk Types . 6
3.3 Magic Number . 12
3.4 Invocation . 13

4 Implementation of forscript 14
4.1 Constants . 14
4.2 Writing Metadata Chunks to Disk 15
4.3 Error Handling . 17
4.4 Startup and Shutdown Messages . 18
4.5 Initialization . 18

4.5.1 Determining the Binary’s Name 18
4.5.2 Command Line Arguments 19
4.5.3 Opening the Output File . 21

4.6 Preparing a New Pseudo Terminal 22
4.6.1 Managing Window Size . 25

4.7 Launching Subprocesses . 26
4.8 Running the Target Application . 27
4.9 Handling Input and Output . 29
4.10 Finishing Execution . 33
4.11 Putting It All Together . 34

5 Evaluation 36
5.1 Compiling forscript . 36
5.2 Example Transcript File . 36

6 Summary 40
6.1 Future Tasks . 40

ii

Acknowledgements
First of all, I would like to thank Prof. Dr. Freiling for the opportunity to write
a thesis about this interesting subject and for supporting me during the process of
writing.

I would also like to thank Andreas Dewald for being available as secondary exam-
iner and Prof. Dr.-Ing. Effelsberg for postponing my thesis deadline.

Thanks to Alexander Brock for testing and fuzzing forscript as well as proof-
reading the thesis.

Michael Stapelberg, thank you for testing forscript and for giving me some
hints about Unix system calls and why script does some things the way it does.

Many thanks go to the free software community: The people who created C,
GCC, Git, LATEX, Linux, make, noweb, script and Vim, but especially those who
create comprehensive documentation. I would like to explicitly mention the BSD
termios(4) manual page as an example of how good documentation should look like.

Thanks to my father for giving me the time to study at my own pace, and thanks
to the hacker community for inspiring me every day.

Finally, I would like to thank Nathalie for the love, support and understanding
before, during and after this thesis.

iii

1 Introduction
1.1 Background: Computer Forensics
Computer forensics is a branch of forensic science. [1] In the digital age we live in,
an increasing number of crimes is performed using or at least aided by digital de-
vices and computer systems. To analyze the evidence that may be present on these
devices, specially trained experts are required. Having knowledge about the technol-
ogy behind the systems, these forensic investigators are able to search for evidence
without destroying traces, modifying or even accidentally inserting misleading data.

Principles and techniques of computer forensics are, among others, employed to
• analyze computers, mobile phones and other electronic devices a suspected

criminal has used,
• recover data after a hardware or software failure,
• gain information during or after attacks or break-in attempts on a computer

system.

Documentation of Terminal Sessions
A forensic investigator has to keep a detailed record of his or her actions while
analyzing a system. That way, in case of dispute about a piece of evidence, an-
other forensic investigator can review the steps that led to certain conclusions. This
forensic log improves the credibility of the investigator and protects a possible de-
fendant from false accusations. Additionally, the investigator protects himself from
forgetting how the evidence was found and what additional details (which probably
seemed to be not important at that time) were present.

The protocol consists of, depending on the type of analysis, notes on paper, im-
ages, videos and data files on the investigator’s computer. For example, to perform
a static analysis of a suspect’s computer’s hard disk drive, i.e. searching the drive
for suspicious data without modifying it, an investigator normally uses his com-
puter, which is equipped with a software that records every action the investigator
performs.

Often a Unix-based operating system like Linux or Mac OS X and command-line
based software (also called CLI software for its command-line user interface) is used
to perform such an analysis, for example dd to create a snapshot of the suspect’s
hard drive, sha1sum to verify its integrity and other tools like foremost to find
evidence in the snapshot. All interaction with the forensic software takes place in a
text-based interface; the investigator uses his keyboard to perform commands, his
workstation responds by displaying1 text and data. A text-based interface cannot
display graphics or use the mouse2.

In principle, CLI sessions can be documented quite easily by creating a piece of
software that records everything typed on the keyboard and everything sent to the
screen. The script utility is often used to accomplish this; however, it has several
limitations described in section 2.5 which greatly limit its usefulness as a forensic
tool.

1also called “printing”, even though the output appears on the screen, not on paper
2Using the mouse is possible via several extensions, but mouse commands are simply translated to

special control characters and can be read by the application just like any other keyboard input.

1

1.2 Tasks
Several tasks have to be solved in this bachelor thesis:
• Analyze script with regard to weaknesses concerning its usage as a forensic

tool.
• Describe script’s output format and its disadvantages.
• Describe in detail an output format suitable for forensic usage.
• Implement a software for Linux that is used like script, but creates output in

the new forensic output format. In order to minimize the requirements a target
system has to meet to be able to run the software, it has to be implemented
in the C programming language.

• Document the software according to the methods of literate programming.
Literate programming [2] is a technique invented by Donald E. Knuth, the author of
the TEX typesetting system. Instead of writing more or less commented source code,
it propagates writing a continuous text with embedded code fragments. These do
not necessarily appear in the order they are executed, but where they are didactically
useful. The software noweb [3] is used to generate the layouted thesis as well as
the final program’s source code out of a single file.

1.3 Results
It is apparent that script is not suited for forensic usage, especially because it
does not record the user’s input and data about the environment it is running
in. A successor, forscript, has been designed and developed in this thesis. Its
output format is portable, extensible and contains detailed information about the
environment. The disadvantages of script are eliminated. Following the paradigm
of literate programming, this thesis is forscript and vice versa.

1.4 Outlook on the Thesis
Section 1, which you are currently reading, contains the introduction into the topic of
computer forensics. It explains why detailed documentation of forensic analyses is an
important task, what a command-line interface is, which subjects will be presented
in this thesis and also provides an overview of the tasks and results.

In section 2, one of the most popular tools for recording interactive terminal
sessions, script, will be presented and the format of the files it generates will
be described. Afterwards, several issues regarding its usage as a forensic tool are
presented, leading to the conclusion that it should be replaced with a more suitable
software.

This new software called forscript will be drafted in section 3, focusing on its
file format and the resulting properties. The invocation syntax of forscript, which
is based on that of script, and the differences in behavior compared to script is
also described.

Section 4, by far the longest section, contains a detailed step-by-step description
of forscript’s source code. It describes how to write forscript’s data format,
parsing the command line, what a pseudo terminal is and how to create one to access
the input and output streams of an application, how to deal with subprocesses and
signals and other things.

2

The resulting application will be evaluated in section 5, which includes an example
transcript file and a description of forscript’s known limitations.

Finally, section 6 summarizes the work that has been done. It talks about the
future of forscript and describes the next steps that should probably be taken to
make it even more useful.

2 script
util-linux is the name of a collection of command-line utilities for Linux systems. It
includes essential software like dmesg, fdisk, mkswap, mount and shutdown as
well as the script and scriptreplay utilities.

The original util-linux package [4] was abandoned in 2006. Today, it has been
replaced by its successor util-linux-ng [5], a fork based on the last available util-
linux version. util-linux-ng is under active development. The analysis of the original
script utility in this thesis is based on the most recent util-linux-ng release as of
the time of writing, version 2.17.

2.1 Purpose
The purpose of script is to record everything printed to the user’s terminal into a
file. According to its manual, “[i]t is useful for students who need a hardcopy record
of an interactive session as proof of an assignment”.

It can also record timing data, specifying the chronological progress of the termi-
nal session, into a second file. Using both of these files, the accompanying utility
scriptreplay can display the recorded data in a video-like way.

2.2 Mode of Operation
In order to record the terminal session, script creates a new pseudo terminal (PTY),
which is a virtual, software-based representation of a terminal line, and attach itself
to the “master” side of it, thereby being able to send and receive data to and from
an application connected to the “slave” side of the PTY.

It launches a subprocess (also known as child), which launches the actual client
application as its own subchild and then records the client application’s output
stream. The parent process forwards the user’s input to the client application.

Recording terminates as soon as the child process exits.

2.3 Invocation
script takes one optional argument, the file name of the output file (also called
typescript file) to generate. If the argument is omitted, the file will be named
typescript, except when the file already exists and is a symbolic or hard link:
script then refuses to overwrite the file, apparently for safety reasons. This check
can be avoided by explicitly providing the file name on the command line.

There are several command-line switches that modify script’s behavior.
The -a switch will pass the a flag instead of w to fopen()’s mode parameter. If a

typescript file does already exist, it will then not be overwritten; instead, the new
content will be appended to the existing file.

3

By default, script will launch the shell specified by the environment variable
$SHELL. If $SHELL it is not set, a default shell selected at compile time (usually
/bin/sh). The shell will be called with -i as its first parameter, making it an
interactive shell. However, if script is called with the -c option, followed by a
command, it will launch the shell with -c and the command instead of -i. The
shell will then be non-interactive and only run the specified command, then exit. For
example, called with the parameters -c ’last -5’, script will launch /bin/sh -c
’last -5’ (or whatever shell is defined in $SHELL). Note that all POSIX-compatible
shells have to support the -i and -c parameters.

If the -f switch is used, script will call fflush() on the typescript file after new
data has been written to it, resulting in instant updates to the typescript file, at the
expense of performance. This is for example useful for letting another user watch
the actions recorded by script in real time.

If the -q switch is not specified, script will display a message when it starts or
quits and also record its startup and termination it the typescript file. With -q,
all of these messages will not appear, with one exception: Since scriptreplay will
unconditionally discard the first line in a typescript file, writing the startup message
("Script started on ...") cannot be disabled.

The -t switch will make script output timing information to stderr. Its format
is described in section 2.4.2.

If script is called with -V or --version as only parameter, it will print its version
and exit.

Any other parameter will make script display an error message and exit.

2.4 File Formats
2.4.1 Typescript
The current implementation of script uses a very simple typescript file format:
Everything the client application sends to the terminal, i.e. everything printed on
screen, will be written to the file, byte by byte, including control characters that are
used for various tasks like setting colors, positioning the cursor etc. Additionally, a
header "Script started on XXX\n" is written, where XXX is the human-readable
date and time when script was invoked. If script was invoked without the -q flag,
an additional footer "Script done on YYY\n", where YYY is the human-readable
date and time when script terminated, is written.

2.4.2 Timing
Since this typescript format completely lacks timing information, the -t flag will
output timing data to stderr. The user has to capture this output to a file by calling
script like this: script -t 2>timingfile.

The timing file consists of tuples of delay and byte count (space-separated), one
per line:

0.725168 56
0.006549 126
0.040017 1
4.727988 1
0.047972 1

4

Each line can be read like “x seconds after the previous output, n more bytes were
sent to the terminal”. If there was no previous output (because it is the first line
of timing information), the delay specifies the time between script invocation and
the first chunk of output.

2.5 Disadvantages
The two file formats produced by script, typescript and timing, show several short-
comings with regard to forensic usage:
• Input coming from the user’s keyboard is not logged at all. A common example

is the user entering a command in the shell but then pressing ˆC instead of
return. The shell will move to the next line and display the prompt again;
there is no visible distinction whether the command was run or not.3

• Metadata about the environment script runs in is not logged. This leads to
a high level of uncertainty when interpreting the resulting typescript, because
even important information like the character set and encoding or the terminal
size and type is missing.

• Typescript and timing are separate files, but one logical entity. They should
reside in one file to protect the user from confusion and mistakes.

• Appending to a typescript file is possible, but ambigious, since the beginning of
a new part is determined only by the string "Script started on ...". Also,
appending to a typescript and recording timing information are incompatible,
because scriptreplay will only ignore the first header line in a typescript
file. Subsequent ones will disturb the timing’s byte counter.

Summary
This section has presented the background, purpose and operation of script. We
have learned that because of several lacking features, using it in computer forensics is
problematic. The next section will introduce a software without these disadvantages.

3 Design of forscript
In this section, the new file format as used by forscript will be specified. You
will learn about how input, output and metadata are combined into a single output
file. After describing the format’s characteristics, the invocation syntax, which is
designed to be compatible to script, will be presented.

3.1 File Format
A forscript data file (called a transcript file) consists of the mostly unaltered
output stream of the client application, but includes blocks of additional data (called
control chunks) at arbitrary positions. A control chunk is started by a shift out byte
(0x0e) and terminated by a shift in byte (0x0f). Each control chunk is either an
input chunk or a metadata chunk.

3With more recent versions of Linux and Bash, terminals which have the ECHOCTL bit set (for example
via stty) will show ˆC at the end of an interrupted line, which fixes this problem to some degree.
Similar issues, like finding out whether the user entered or tab-completed some text, still persist.

5

3.1.1 Input Chunks
Input chunks contain the data that is sent to the client application’s input stream,
which is usually identical to the user’s keyboard input. They are of arbitrary length
and terminate at the shift in byte. If a literal shift out or shift in byte needs to
appear in an input chunk’s data, it is escaped by prepending a data link escape
byte (0x10). If a literal data link escape byte needs to appear in an input chunk’s
data, it has to be doubled (i.e., 0x10 0x10). For example, if the user sends the byte
sequence 0x4e 0x0f 0x00 0x61 0x74 0x10, the complete input chunk written to
the transcript file is 0x0e 0x4e 0x10 0x0f 0x00 0x61 0x74 0x10 0x10 0x0f.

3.1.2 Metadata Chunks
Metadata chunks, also called meta chunks, contain additional information about the
file or the application’s status, for example environment variables, terminal settings
or time stamps. They contain an additional shift out byte at the beginning, followed
by a byte that determines the type of metadata that follows. The available types
are described below. Meta chunks are of arbitrary length and terminate at the shift
in byte. The same escaping of shift out, shift in and data link escape that is used
for input chunks is also used for meta chunks. For example, the “terminal size”
meta type is introduced by its type byte 0x11, followed by width and heigth of the
terminal, represented as two unsigned big-endian 16-bit integers. The information
“terminal size is 80×16 characters” would be written to the transcript file as 0x0e
0x0e 0x11 0x00 0x50 0x00 0x10 0x10 0x0f. Note that the least significant byte
of the number 16 has to be written as 0x10 0x10 to prevent the special meaning of
0x10 to escape the following 0x0f.

3.1.3 Properties of the File Format
This basic file format design has several advantages:
• New meta chunk types can be introduced while still allowing older tools to

read the file, because the escaping rules are simple and the parsing application
need not know a fixed length of each type.

• Since switching between input and output data occurs very often in a usual
terminal session, the format is designed to require very little storage overhead
for these operations.

• The format is very compact and easy to implement. Using a format like XML
would decrease performance and require sophisticated libraries on the machine
forscript is run on. However, for forensic usage it is best to be able to use
a small statically linked executable.

• Converting a forscript file to a script file is basically as easy as removing
everything between shift out and shift in bytes (while respecting escaping rules,
of course).

3.2 Metadata Chunk Types
The next sections will describe the available metadata chunk types. Integers are un-
signed and big endian, except where noted otherwise. In the resulting file, numbers
are represented in binary form, not as ASCII digits.

6

For better understanding, the code forscript uses to write each meta chunk
appears after the chunk’s explanation. The three functions chunkwh(), chunkwf()
and chunkwd() that are used for actually writing the data to disk will be explained
in section 4.2. To be able to understand the code, it is sufficient to know that
chunkwh() takes one parameter (the chunk’s type) and writes the header bytes.
chunkwf() writes the footer byte and takes no parameters, while chunkwd() writes
the payload data, escaping it on the fly, and requires a pointer and byte count. There
is an additional convenience function chunkwm() that takes all three parameters and
will write a complete metadata chunk.

All chunk functions return a negative value if an error occured, for example if an
environment setting could not be retrieved or if writing to the transcript file failed.
Since only a partial metadata chunk may have been written to the transcript, the file
is no longer in a consistent state. Therefore, forscript should terminate whenever
a chunk function returns a negative value.

A transcript file needs to begin with a file version meta chunk, followed directly
by the first start of session chunk.

0x01 File Version (1 byte)
The transcript file must start with a meta chunk of this type; there may be no other
data before it.

Denotes the version of the forscript file format that is being used for this file.
In order to guarantee a length of exactly one byte, the version numbers 0, 14, 15
and 16 are not allowed, therefore no escaping takes place. This document describes
version 1 of the format, therefore currently the only valid value is 0x01.

7 〈chunks 7〉≡ (35a) 8a .

int chunk01() {
unsigned char ver = 0x01;
return chunkwm(0x01, &ver, sizeof(ver));

}
Defines:

chunk01, used in chunk 30a.
Uses chunkwm 17a.

7

0x02 Begin of Session (10 bytes)
Denotes the start of a new forscript session. The first four data bytes represent
the start time as the number of seconds since the Unix Epoch. The next four
bytes contain a signed representation of the nanosecond offset to the number of
seconds. If these four bytes are set to 0xffffffff, there was an error retrieving the
nanoseconds. The last two bytes specify the machine’s (signed) time zone offset to
UTC in minutes. If these two bytes are set to 0xffff, the machine’s timezone is
unknown.

8a 〈chunks 7〉+≡ (35a) / 7 9a .

int chunk02() {
struct timespec now;
extern long timezone;
int ret;
unsigned char data[10];
uint32_t secs;
int32_t nanos = ˜0;
int16_t tzone = ˜0;
if ((ret = clock_gettime(CLOCK_REALTIME, &now)) < 0)

return ret;
secs = htonl(now.tv_sec);
if (now.tv_nsec < 1000000000L && now.tv_nsec > -1000000000L)

nanos = htonl(now.tv_nsec);
tzset();
tzone = htons((uint16_t)(timezone / -60));
memcpy(&data[0], &secs, sizeof(secs));
memcpy(&data[4], &nanos, sizeof(nanos));
memcpy(&data[8], &tzone, sizeof(tzone));
return chunkwm(0x02, data, sizeof(data));

}
Defines:

chunk02, used in chunk 30a.
Uses chunkwm 17a.

This chunk requires the headers time.h for clock gettime(), inet.h for htonl()
and string.h for memcpy():

8b 〈includes 8b〉≡ (34e) 11b .

#include <time.h>
#include <arpa/inet.h>
#include <string.h>

8

0x03 End of Session (1 byte)
Denotes the end of a forscript session. The data byte contains the return value
of the child process. The usual exit code convention applies: If the child exited
normally, use its return value. If the child was terminated as a result of a signal
(like SIGSEGV), use the number of the signal plus 128.

The parameter status should contain the raw status value returned by wait(),
not only the child’s return value. If the exit code of the child could not be deter-
mined, 0xff is used instead.

9a 〈chunks 7〉+≡ (35a) / 8a 9b .

int chunk03(int status) {
unsigned char data = ˜0;
if (WIFEXITED(status))

data = WEXITSTATUS(status);
else if (WIFSIGNALED(status))

data = 128 + WTERMSIG(status);
return chunkwm(0x03, &data, sizeof(data));

}
Defines:

chunk03, used in chunk 34d.
Uses chunkwm 17a.

0x11 Terminal Size (two 2-byte values)
Is written at session start and when the size of the terminal window changes. The
first data word contains the number of colums, the second one the number of rows.

Since the terminal size has to be passed to the running client application, the
chunk itself does not request the values, but receives them as a parameter.

9b 〈chunks 7〉+≡ (35a) / 9a 10 .

int chunk11(struct winsize *size) {
uint32_t be;
be = htonl((size->ws_col << 16) | size->ws_row);
return chunkwm(0x11, (unsigned char *)&be, sizeof(be));

}
Defines:

chunk11, used in chunk 25b.
Uses chunkwm 17a and winsize 25b.

9

0x12 Environment Variables (arbitrary number of C strings)
Is written at session start. Contains the environment variables and their values as
NAME=value pairs, each pair is terminated by a null byte (0x00). Since variable
names may not contain the = character and neither variables names nor the values
may include a null byte, the list needs no special escaping.

10 〈chunks 7〉+≡ (35a) / 9b 11a .

int chunk12() {
extern char **environ;
int i = 0;
int ret;
while (environ[i] != NULL) {

if (i == 0) {
if ((ret = chunkwh(0x12)) < 0)

return ret;
}
if ((ret = chunkwd((unsigned char *)environ[i],

strlen(environ[i]) + 1)) < 0)
return ret;

i++;
}
if (i != 0) {

if ((ret = chunkwf()) < 0)
return ret;

}
return 1;

}
Defines:

chunk12, used in chunk 30a.
Uses chunkwd 15a, chunkwf 16c, and chunkwh 16c.

10

0x13 Locale Settings (seven C strings)
Is written at session start. Contains the string values of several locale settings,
namely LC ALL, LC COLLATE, LC CTYPE, LC MESSAGES, LC MONETARY, LC NUMERIC and
LC TIME, in that order, each terminated by a null byte.

11a 〈chunks 7〉+≡ (35a) / 10 12 .

int chunk13() {
int cat[7] = { LC_ALL, LC_COLLATE, LC_CTYPE, LC_MESSAGES,

LC_MONETARY, LC_NUMERIC, LC_TIME };
char *loc;
int ret;
if ((ret = chunkwh(0x13)) < 0)

return ret;
for (int i = 0; i < 7; i++) {

if ((loc = setlocale(cat[i], "")) == NULL)
return -1;

if ((ret = chunkwd((unsigned char *)loc,
strlen(loc) + 1)) < 0)

return ret;
}
if ((ret = chunkwf()) < 0)

return ret;
return 0;

}
Defines:

chunk13, used in chunk 30a.
Uses chunkwd 15a, chunkwf 16c, and chunkwh 16c.

setlocale() requires locale.h:
11b 〈includes 8b〉+≡ (34e) / 8b 16b .

#include <locale.h>

11

0x16 Delay (two 4-byte values)
Contains the number of seconds and nanoseconds that have passed since the last
delay chunk (or, if this is the first one, since the session started).

A replaying application should wait for the time specified in this chunk before
advancing further in the transcript file.

Since the seconds and nanoseconds are represented as integers, converting to a
floating-point number would mean a loss of precision. Therefore both integers are
subtracted independently. If the nanoseconds part of now is less than that of ts, the
seconds part has to be decreased by one for the result to be correct.

12 〈chunks 7〉+≡ (35a) / 11a
int chunk16(struct timespec *ts) {

unsigned char buf[2 * sizeof(uint32_t)];
uint32_t secs, nanos;
struct timespec now;
if (clock_gettime(CLOCK_MONOTONIC, &now) < 0)

return -1;
secs = now.tv_sec - ts->tv_sec;
if (now.tv_nsec > ts->tv_nsec) {

nanos = now.tv_nsec - ts->tv_nsec;
} else {

nanos = 1000000000L - (ts->tv_nsec - now.tv_nsec);
secs--;

}
*ts = now;
secs = htonl(secs);
nanos = htonl(nanos);
memcpy(&buf[0], &secs, sizeof(secs));
memcpy(&buf[sizeof(secs)], &nanos, sizeof(nanos));
return chunkwm(0x16, buf, sizeof(buf));

}
Defines:

chunk16, used in chunk 32a.
Uses chunkwm 17a.

3.3 Magic Number
Since a forscript file has to start with a file version chunk followed by a begin
of session chunk, there is a distinctive eight-byte signature at the beginning of each
file:

0x0e 0x0e 0x01 0x?? 0x0f 0x0e 0x0e 0x02

The first two bytes start a metadata chunk, the third one identifies it as a file version
chunk. The fourth byte contains the version number, which is currently 0x01 but
may change in the future. Byte 5 closes the version chunk, 5 to 8 start a begin of
session chunk.

12

3.4 Invocation
forscript’s invocation syntax has been designed to be compatible to script, most
parameters result in the same behavior. The following list contains additional notes
and describes the differences to script:

• -a (append): If the target transcript file already exists and is non-empty, it
has to start with a valid and supported file version header.

• -c (command) and -f (flush): Identical to script.
• -q (quiet): In contrast to script, no startup message will be written to the

transcript file.
• -t (timing): This parameter will be accepted, but ignored. forscript always

records timing information.
• -V and --version: Identical to script, both will make forscript output

its version information and terminate. The parameter has to be the only one
specified on the command line, else an error message will be printed.

If unsupported parameters are passed, forscript will print a short usage sum-
mary to stderr and exit.

While running, the client application’s output will be printed to stdout. Error
messages will be printed to stderr.

Summary
Now you know how forscript stores the recorded terminal session and how it will
be called by the user. You have seen the code that writes the various metadata
chunks. After this soft introduction to forscript’s implementation, the next sec-
tion contains the rest of the code and will talk in detail about how the software
works.

13

4 Implementation of forscript
This section will describe the code of forscript in detail. You will learn how the
software hooks into the input and output stream of the client application and how it
reacts to things like window size changes or the child terminating. Other interesting
topics include how to launch a subprocess and change its controlling terminal as well
as how to read from multiple data streams at one without having to run separate
processes.

4.1 Constants
For improved readability, we define the special characters introduced in the previous
section as constants:

14a 〈constants 14a〉≡ (34f) 14b .

const unsigned char SO = 0x0e;
const unsigned char SI = 0x0f;
const unsigned char DLE = 0x10;

Defines:
DLE, used in chunk 15a.
SI, used in chunks 16c and 32b.
SO, used in chunks 16c and 32b.
It is by design that the three special characters have consecutive byte numbers.

This allows us to define a minimum and maximum byte value that requires special
escape handling:

14b 〈constants 14a〉+≡ (34f) / 14a 30d .

const unsigned char ESCMIN = 0x0e;
const unsigned char ESCMAX = 0x10;

Defines:
ESCMAX, used in chunk 15a.
ESCMIN, used in chunk 15a.

14

4.2 Writing Metadata Chunks to Disk
The function chunkwd() takes a pointer and a byte count as arguments and writes
chunk data to the transcript file, applying required escapes on the fly. To improve
performance, it does not write byte-by-byte, but instead scans the input data until
it finds a special character. When it does, it writes everything up to, but not
including, the special character to the file and then adds a DLE character. The
search then goes on. If another special character is found, everything from the last
special character (inclusive) to the current one (exclusive) plus a DLE is written.
Eventually the whole input data will have been scanned and the function terminates
after writing everything from the last special character (inclusive) or the beginning
of the data (if there were no special characters) to the end of the input data. This
is the code:

15a 〈chunkw 15a〉≡ (35a)
int chunkwd(unsigned char *data, int count) {

int escaped = 0;
int pos = 0;
int start = 0;
while (pos < count) {

if (data[pos] <= ESCMAX && data[pos] >= ESCMIN) {
if (pos > start) {

if (!swrite(&data[start], sizeof(char),
pos - start, OUTF))

return -1;
}
if (!swrite(&DLE, sizeof(DLE), 1, OUTF))

return -2;
start = pos;
escaped++;

}
pos++;

}
if (!swrite(&data[start], sizeof(char),

pos - start, OUTF))
return -3;

return escaped;
}

Defines:
chunkwd, used in chunks 10, 11a, 17a, and 32b.

Uses DLE 14a, ESCMAX 14b, ESCMIN 14b, OUTF 15b, and swrite 16a.
OUTF is the already opened transcript file and a global variable:

15b 〈globals 15b〉≡ (34f) 18b .

FILE *OUTF;
Defines:

OUTF, used in chunks 15a, 16c, 18c, 21d, 22a, 27c, and 32–34.

15

The swrite() function (“safe write”) that is being used here will return zero if the
number of items written is not equal to the number of items that should have been
written:

16a 〈swrite 16a〉≡ (35a)
int swrite(const void *ptr, size_t size,

size_t nmemb, FILE *stream) {
return (fwrite(ptr, size, nmemb, stream) == nmemb);

}
Defines:

swrite, used in chunks 15a and 16c.
To be able to use fwrite(), stdio.h has to be included:

16b 〈includes 8b〉+≡ (34e) / 11b 18a .

#include <stdio.h>
There are functions to write chunk headers and footers:

16c 〈chunkwhf 16c〉≡ (35a)
int chunkwh(unsigned char id) {

int ret;
for (int i = 0; i < 2; i++) {

ret = swrite(&SO, sizeof(SO), 1, OUTF);
if (!ret)

return -1;
}
return (swrite(&id, sizeof(unsigned char),

1, OUTF)) ? 1 : -1;
}

int chunkwf() {
return (swrite(&SI, sizeof(SI), 1, OUTF)) ? 1 : -1;

}
Defines:

chunkwf, used in chunks 10, 11a, and 17a.
chunkwh, used in chunks 10, 11a, and 17a.

Uses OUTF 15b, SI 14a, SO 14a, and swrite 16a.

16

There is also a convenience function that writes a meta chunk’s header and footer
as well as the actual data:

17a 〈chunkwm 17a〉≡ (35a)
int chunkwm(unsigned char id, unsigned char *data, int count) {

int ret;
if (!chunkwh(id))

return -11;
if ((ret = chunkwd(data, count)) < 0)

return ret;
if (!chunkwf())

return -12;
return 1;

}
Defines:

chunkwm, used in chunks 7–9 and 12.
Uses chunkwd 15a, chunkwf 16c, and chunkwh 16c.

4.3 Error Handling
If the program has to terminate abnormally, the function die() will be called. After
resetting the terminal attributes and telling a possible child process to exit, it will
output an error message and exit the software.

17b 〈die 17b〉≡ (35a)
void die(char *message, int chunk) {

if (TTSET)
tcsetattr(STDERR_FILENO, TCSADRAIN, &TT);

if (CHILD > 0)
kill(CHILD, SIGTERM);

fprintf(stderr, "%s: ", MYNAME);
if (chunk != 0) {

fprintf(stderr, "metadata chunk %02x failed", chunk);
if (message != NULL)

fprintf(stderr, ": ");
} else {

if (message == NULL)
fprintf(stderr, "unknown error");

}
if (message != NULL)

fprintf(stderr, message);
fprintf(stderr, "; exiting.\n");
exit(EXIT_FAILURE);

}
Defines:

die, used in chunks 18c, 21–30, 32a, and 34d.
Uses CHILD 27a, MYNAME 18b, and TTSET 23a.

17

exit() requires stdlib.h:
18a 〈includes 8b〉+≡ (34e) / 16b 19d .

#include <stdlib.h>
The global variable MYNAME contains a pointer to the name the binary was called

as and is set in main().
18b 〈globals 15b〉+≡ (34f) / 15b 19c .

char *MYNAME;
Defines:

MYNAME, used in chunks 17–21.

4.4 Startup and Shutdown Messages
The statusmsg() function writes a string to both the terminal and the transcript:

18c 〈statusmsg 18c〉≡ (35b)
void statusmsg(const char *msg) {

char date[BUFSIZ];
time_t t = time(NULL);
struct tm *lt = localtime(&t);
if (lt == NULL)

die("localtime failed", 0);
if (strftime(date, sizeof(date), "%c", lt) < 1)

die("strftime failed", 0);
if (printf(msg, date, OUTN) < 0) {

perror("status stdout");
die("statusmsg stdout failed", 0);

}
if (fprintf(OUTF, msg, date, OUTN) < 0) {

perror("status transcript");
die("statusmsg transcript failed", 0);

}
}

Defines:
statusmsg, used in chunks 30c and 34b.

Uses die 17b, OUTF 15b, and OUTN 20c.

4.5 Initialization
4.5.1 Determining the Binary’s Name
To be able to output its own name (e.g. in error messages), forscript determines
the name of the binary that has been called by the user. This value is stored in
argv[0]. The global variable MYNAME will be used to reference that value from every
function that needs it.

18d 〈setmyname 18d〉≡ (35e) 19a .

MYNAME = argv[0];
Uses MYNAME 18b.

18

If forscript was called using a path name (e.g. /usr/bin/forscript), every-
thing up to the final slash needs to be cut off. This is done by moving the pointer
to the character immediately following the final slash.

19a 〈setmyname 18d〉+≡ (35e) / 18d
{ char *lastslash;

if ((lastslash = strrchr(MYNAME, ’/’)) != NULL)
MYNAME = lastslash + 1;

}
Uses MYNAME 18b.

4.5.2 Command Line Arguments
Since forscript’s invocation tries to mimic script’s as far as possible, command
line argument handling is designed to closely resemble script’s behavior. Therefore,
like in script, the command line switches --version and -V are treated separately.
If there is exactly one command line argument and it is one of these, forscript
will print its version and terminate.

19b 〈getopt 19b〉≡ (35e) 20b .

if ((argc == 2) &&
(!strcmp(argv[1], "-V") || !strcmp(argv[1], "--version"))) {

printf("%s %s\n", MYNAME, MYVERSION);
return 0;

}
Uses MYNAME 18b and MYVERSION 19c.

MYVERSION is defined as a global constant:
19c 〈globals 15b〉+≡ (34f) / 18b 19e .

const char *MYVERSION = "1.0.0";
Defines:

MYVERSION, used in chunk 19b.
The other options are parsed using the normal getopt() method, which requires

unistd.h:
19d 〈includes 8b〉+≡ (34e) / 18a 21b .

#include <unistd.h>
getopt() returns the next option character each time it is called, and −1 if there

are none left. The option characters are handled in a switch statement. As in
script, flags that turn on some behavior cause a respective global int variable to
be increased by one. These flags are:

19e 〈globals 15b〉+≡ (34f) / 19c 20a .

int aflg = 0, fflg = 0, qflg = 0;
Defines:

aflg, used in chunks 20–22 and 30a.

19

The value of the -c parameter is stored in a global string pointer:
20a 〈globals 15b〉+≡ (34f) / 19e 20c .

char *cflg = NULL;
Defines:

cflg, used in chunks 20b and 28d.
The -t flag is accepted for compatibility reasons, but has no effect in forscript

because timing information is always written.
After the loop terminates, optind arguments have been parsed. argc and argv

are then modified accordingly to only handle non-option arguments (in forscript
this is only the file name).

The parsing loop therefore looks like this:
20b 〈getopt 19b〉+≡ (35e) / 19b

{ int c; extern char *optarg; extern int optind;
while ((c = getopt(argc, argv, "ac:fqt")) != -1)

switch ((char)c) {
case ’a’:

aflg++; break;
case ’c’:

cflg = optarg; break;
case ’f’:

fflg++; break;
case ’q’:

qflg++; break;
case ’t’:

break;
case ’?’:
default:

fprintf(stderr,
"usage: %s [-afqt] [-c command] [file]\n",
MYNAME);

exit(1);
break;

}
argc -= optind;
argv += optind;

}
Uses aflg 19e, cflg 20a, and MYNAME 18b.

After the options have been parsed, the output file name will be determined and
stored in the global string OUTN:

20c 〈globals 15b〉+≡ (34f) / 20a 22d .

char *OUTN = "transcript";
Defines:

OUTN, used in chunks 18c and 21.

20

If there was no file name supplied on the command line, the default name is
transcript. This differs from script’s default name typescript intentionally,
because the file format is different and can, for example, not be displayed directly
using cat. If there are any scripts or constructs that assume the default output
file name to be typescript, the chance that replacing script with forscript will
break their functionality anyway is quite high.

4.5.3 Opening the Output File
As in script, there is a safety warning if no file name was supplied and transcript
exists and is a (hard or soft) link.

21a 〈openoutfile 21a〉≡ (35e) 21d .

if (argc > 0) {
OUTN = argv[0];

} else {
struct stat s;
if (lstat(OUTN, &s) == 0 &&

(S_ISLNK(s.st_mode) || s.st_nlink > 1)) {
fprintf(stderr, "Warning: ‘%s’ is a link.\n"

"Use ‘%s [options] %s’ if you really "
"want to use it.\n"
"%s not started.\n",
OUTN, MYNAME, OUTN, MYNAME);

exit(1);
}

}
Uses MYNAME 18b and OUTN 20c.

lstat() needs types.h and stat.h as well as XOPEN SOURCE:
21b 〈includes 8b〉+≡ (34e) / 19d 22b .

#include <sys/types.h>
#include <sys/stat.h>

21c 〈featuretest 21c〉≡ (34e) 22c .

#define _XOPEN_SOURCE 500
Defines:

XOPEN SOURCE, never used.

The file will now be opened, either for writing or for appending, depending on
aflg. Note that if appending, the file will be opened for reading as well. This is
because forscript checks the file version header before appending to a file.

21d 〈openoutfile 21a〉+≡ (35e) / 21a 22a .

if ((OUTF = fopen(OUTN, (aflg ? "a+" : "w"))) == NULL) {
perror(OUTN);
die("the output file could not be opened", 0);

}
Uses aflg 19e, die 17b, OUTF 15b, and OUTN 20c.

21

If the file has been opened for appending, check whether it starts with a compatible
file format. Currently, the only format allowed is 0x01. If the file is empty, appending
is possible, but the file version chunk has to be written. This is done by setting
aflg to 0, which will cause doio() to write the chunk.

22a 〈openoutfile 21a〉+≡ (35e) / 21d
if (aflg) {

char buf[5];
size_t count;
count = fread(&buf, sizeof(char), 5, OUTF);
if (count == 0)

aflg = 0;
else if (count != 5 ||

strncmp(buf, "\x0e\x0e\x01\x01\x0f", 5) != 0)
die("output file is not in forscript format v1, "

"cannot append", 0);
}

Uses aflg 19e, die 17b, and OUTF 15b.

4.6 Preparing a New Pseudo Terminal
While script uses manual PTY allocation (by trying out device names) or BSD’s
openpty() where available, forscript has been designed to use the Unix 98 PTY
multiplexer (/dev/ptmx) standardized in POSIX.1-2001 to create a new PTY. This
method requires fcntl.h and a sufficiently high feature test macro value for POSIX
code.

22b 〈includes 8b〉+≡ (34e) / 21b 23c .

#include <fcntl.h>

22c 〈featuretest 21c〉+≡ (34e) / 21c
#define _POSIX_C_SOURCE 200112L

Defines:
POSIX C SOURCE, never used.

The PTY’s master and slave file descriptors will be stored in these global variables:
22d 〈globals 15b〉+≡ (34f) / 20c 23a .

int PTM = 0, PTS = 0;
Defines:

PTM, used in chunks 23–25, 27c, 29d, 31, 32, and 34d.

22

Additionally, the settings of the terminal forscript runs in will be saved in the
global variable TT. This variable is used to duplicate the terminal’s settings to the
newly created PTY as well as to restore the terminal settings as soon as forscript
terminates. There is also a variable TTSET which stores whether the settings have
been written to TT. This is important when restoring the terminal settings after a
failure: If the settings have not yet been written to TT, applying them will lead to
undefined behavior.

23a 〈globals 15b〉+≡ (34f) / 22d 27a .

struct termios TT;
int TTSET = 0;

Defines:
TTSET, used in chunks 17b and 23b.

23b 〈openpt 23b〉≡ (35e) 23d .

if (tcgetattr(STDIN_FILENO, &TT) < 0) {
perror("tcgetattr");
die("tcgetattr failed", 0);

}
TTSET = 1;

Uses die 17b and TTSET 23a.

The termios structure is defined in termios.h.
23c 〈includes 8b〉+≡ (34e) / 22b 25c .

#include <termios.h>
A new PTY master is requested like this:

23d 〈openpt 23b〉+≡ (35e) / 23b 23e .

if ((PTM = posix_openpt(O_RDWR)) < 0) {
perror("openpt");
die("openpt failed", 0);

}
Uses die 17b and PTM 22d.

Then, access to the slave is granted.
23e 〈openpt 23b〉+≡ (35e) / 23d 24a .

if (grantpt(PTM) < 0) {
perror("grantpt");
die("grantpt failed", 0);

}
if (unlockpt(PTM) < 0) {

perror("unlockpt");
die("unlockpt failed", 0);

}
Uses die 17b and PTM 22d.

23

The slave’s device file name is requested using ptsname(). Since the name is
not needed during further execution, the slave will be opened and its file descriptor
stored.

24a 〈openpt 23b〉+≡ (35e) / 23e 24b .

{ char *pts = NULL;
if ((pts = ptsname(PTM)) != NULL) {

if ((PTS = open(pts, O_RDWR)) < 0) {
perror(pts);
die("pts open failed", 0);

}
} else {

perror("ptsname");
die("ptsname failed", 0);

}
}

Uses die 17b and PTM 22d.
The “parent” terminal will be configured into a “raw” mode of operation. script

does this by calling cfmakeraw(), which is a nonstandard BSD function. For porta-
bility reasons forscript sets the corresponding bits manually, thereby emulating
cfmakeraw(). The list of settings is taken from the termios(3) Linux man page [6]
and should be equivalent. Afterwards, the settings of the terminal forscript was
started in will be copied to the new terminal. This means that in the eyes of the
user the terminal’s behavior will not change, but forscript can now document the
terminal’s data stream with maximum accuracy.

24b 〈openpt 23b〉+≡ (35e) / 24a 25d .

{
struct termios rtt = TT;
rtt.c_iflag &= ˜(IGNBRK | BRKINT | PARMRK | ISTRIP

| INLCR | IGNCR | ICRNL | IXON);
rtt.c_oflag &= ˜OPOST;
rtt.c_lflag &= ˜(ECHO | ECHONL | ICANON | ISIG | IEXTEN);
rtt.c_cflag &= ˜(CSIZE | PARENB);
rtt.c_cflag |= CS8;
if (tcsetattr(STDIN_FILENO, TCSANOW, &rtt) < 0) {

perror("tcsetattr stdin");
die("tcsetattr stdin failed", 0);

}
if (tcsetattr(PTS, TCSANOW, &TT) < 0) {

perror("tcsetattr pts");
die("tcsetattr pts failed", 0);

}
}

Uses die 17b.

24

4.6.1 Managing Window Size
If the size of a terminal window changes, the controlling process receives a SIGWINCH
signal and should act accordingly. forscript handles this signal in the resized()
function by writing the new size to the transcript and forwarding it to the client
terminal.

25a 〈resized 25a〉≡ (35c)
void resized(int signal) {

UNUSED(signal);
winsize(3);

}
Defines:

resized, used in chunk 26a.
Uses UNUSED 33d and winsize 25b.

The actual reading and writing of the window size is done by winsize(), which
takes a mode parameter. If the mode is 1, the client application’s terminal size will
be set. If the mode is 2, the terminal size will be written to the transcript. If the
mode is 3, both operations will be done, which is the usual case.

25b 〈winsize 25b〉≡ (35c)
void winsize(unsigned int mode) {

struct winsize size;
ioctl(STDIN_FILENO, TIOCGWINSZ, &size);
if (mode & 2)

if (chunk11(&size) < 0)
die("writing window size", 0x11);

if ((mode & 1) && PTM)
ioctl(PTM, TIOCSWINSZ, &size);

}
Defines:

winsize, used in chunks 9b, 25, and 30a.
Uses chunk11 9b, die 17b, and PTM 22d.

Retrieving the window size requires ioctl.h for ioctl():
25c 〈includes 8b〉+≡ (34e) / 23c 26b .

#include <sys/ioctl.h>
The client PTY’s window size will be initialized now. This needs to take place

before the client application is launched, because it probably requires an already
configured terminal size when starting up. Writing the size to the transcript however
would put the window size meta chunk before the start of session chunk, therefore
winsize()’s mode 1 is used.

25d 〈openpt 23b〉+≡ (35e) / 24b
winsize(1);

Uses winsize 25b.

25

4.7 Launching Subprocesses
The original script uses one process to listen for input, one to listen for output and
one to initialize and execl() the command to be recorded. forscript in contrast
uses only the select() function to be notified of pending input and output and
therefore only needs two processes: Itself and the subcommand.

Registering Signal Handlers
To be notified of an exiting subprocess, a handler for the SIGCHLD signal needs to
be defined. This signal is usually sent by the operating system if any child process’s
run status changes, i.e. it is stopped (SIGSTOP), continued (SIGCONT) or it exits.
script terminates if the child is stopped, but forscript does not, because it uses
the SA NOCLDSTOP flag to specify that it wishes not to be notified about the child
stopping or resuming. The function finish() handles the child’s termination. The
second signal handler, resized(), handles window size changes.

26a 〈sigchld 26a〉≡ (35e)
{ struct sigaction sa;

sigemptyset(&sa.sa_mask);
sa.sa_flags = SA_NOCLDSTOP;
sa.sa_handler = finish;
sigaction(SIGCHLD, &sa, NULL);
sa.sa_handler = resized;
sigaction(SIGWINCH, &sa, NULL);

}
Uses finish 33c and resized 25a.

These functions and constants require signal.h.
26b 〈includes 8b〉+≡ (34e) / 25c 29b .

#include <signal.h>

Forking
When a progam calls the fork() function, the operating system basically clones
the program into a new process that is a subprocess of the caller. Both processes
continue to run at the next command after the fork() call, but the value fork()
returned will be different: The child will see a return value of 0, while the parent
will retrieve the process ID of the child. A negative value will be returned if the fork
did not succeed.

26c 〈fork 26c〉≡ (35e) 27b .

if ((CHILD = fork()) < 0) {
perror("fork");
die("fork failed", 0);

}
Uses CHILD 27a and die 17b.

26

CHILD is used in several places when dealing with the subprocess, therefore it is a
global variable.

27a 〈globals 15b〉+≡ (34f) / 23a
int CHILD = 0;

Defines:
CHILD, used in chunks 17b, 26c, 27b, 31, and 33c.
After forking, the child launches (or, to be exact, becomes) the process that should

be logged, while the parent does the actual input/output logging.
27b 〈fork 26c〉+≡ (35e) / 26c

if (CHILD == 0)
doshell();

else
doio();

Uses CHILD 27a, doio 29c, and doshell 27c.

4.8 Running the Target Application
The doshell() function is run in the child process, whose only task it is to set up all
required PTY redirections and then execute the client command. Therefore, open
file descriptors from the parent process which are no longer needed are closed early.

27c 〈doshell 27c〉≡ (35d) 27d .

void doshell() {
close(PTM);
fclose(OUTF);

Defines:
doshell, used in chunk 27b.

Uses OUTF 15b and PTM 22d.

Changing the Terminal
Next, the child process changes its controlling terminal to be the PTY slave. In
order to do that, it has to be placed in a separate session.

27d 〈doshell 27c〉+≡ (35d) / 27c 28a .

setsid();
if (ioctl(PTS, TIOCSCTTY, 0) < 0) {

perror("controlling terminal");
die("controlling terminal failed", 0);

}
Uses die 17b.

27

Standard input, output and error are bound to the PTY slave, which can then be
closed.

28a 〈doshell 27c〉+≡ (35d) / 27d 28b .

if ((dup2(PTS, STDIN_FILENO) < 0) ||
(dup2(PTS, STDOUT_FILENO) < 0) ||
(dup2(PTS, STDERR_FILENO) < 0)) {

perror("dup2");
die("dup2 failed", 0);

}
close(PTS);

Uses die 17b.

Determining the Shell
If the environment variable $SHELL is set, its value is used. Otherwise the default is
/bin/sh, which should exist on all Unix systems.

28b 〈doshell 27c〉+≡ (35d) / 28a 28c .

char *shell;
if ((shell = getenv("SHELL")) == NULL)

shell = "/bin/sh";
Next, the name of the shell, without any path components, is determined to be

used as argument zero when executing the client command.
28c 〈doshell 27c〉+≡ (35d) / 28b 28d .

char *shname;
if ((shname = strrchr(shell, ’/’)) == NULL)

shname = shell;
else

shname++;

Executing the Shell
Finally, the execl() function is used to replace the currently running forscript
process with the shell that has just been selected. If a target command has been
specified using the -c option, it will be passed to the shell. Else, an interactive shell
is launched using the -i option.

28d 〈doshell 27c〉+≡ (35d) / 28c 29a .

if (cflg != NULL)
execl(shell, shname, "-c", cflg, NULL);

else
execl(shell, shname, "-i", NULL);

Uses cflg 20a.

28

The forscript child process should now have been replaced with the shell. If
execution reaches code after execl(), an error occured and the child process will
terminate with an error message.

29a 〈doshell 27c〉+≡ (35d) / 28d
perror(shell);
die("execing the shell failed", 0);

}
Uses die 17b.

4.9 Handling Input and Output
While script forks twice and utilizes separate processes to handle input and output
to and from the client application, forscript uses a single process for both tasks,
taking advantage of the select() function (defined in select.h) that allows it to
monitor several open file descriptors at once.

29b 〈includes 8b〉+≡ (34e) / 26b 34a .

#include <sys/select.h>
Input and output data will never be read simultaneously. Therefore, a single data

buffer is sufficient. Its size is BUFSIZ bytes, which is a constant defined in stdio.h
and contains a recommended buffer size, for example 8192 bytes. The number of
bytes that have been read into the buffer by read() will be stored in count.

29c 〈doio 29c〉≡ (35d) 29d .

void doio() {
char iobuf[BUFSIZ];
int count;

Defines:
doio, used in chunk 27b.
The select() function is supplied with a set of file descriptors to watch, stored in

the variable fds. It returns in sr the number of file descriptors that are ready, or −1
if an error occured (for example, a signal like SIGWINCH was received). Additionally,
it requires the number of the highest-numbered file descriptor plus one as its first
parameter. On all Unix systems, stdin should be file descriptor 0, but for maximum
portability, forscript compares both descriptors and stores the value to pass to
select() in the variable highest.

29d 〈doio 29c〉+≡ (35d) / 29c 29e .

fd_set fds;
int sr;
int highest = ((STDIN_FILENO > PTM) ?

STDIN_FILENO : PTM) + 1;
Uses PTM 22d.

The variable drain determines whether the child has already terminated, but the
buffers still have to be drained.

29e 〈doio 29c〉+≡ (35d) / 29d 30a .

int drain = 0;

29

Several metadata chunks need to be written. If the -a flag is not set, a file version
chunk is written. Then begin of session, environment variables and locale settings.
Finally winsize()’s mode 2 is used to only write the window size to the transcript
without sending a second SIGWINCH to the client.

30a 〈doio 29c〉+≡ (35d) / 29e 30b .

if (!aflg)
if (chunk01() < 0)

die(NULL, 0x01);
if (chunk02() < 0)

die(NULL, 0x02);
if (chunk12() < 0)

die(NULL, 0x12);
if (chunk13() < 0)

die(NULL, 0x13);
winsize(2);

Uses aflg 19e, chunk01 7, chunk02 8a, chunk12 10, chunk13 11a, die 17b, and winsize 25b.
To be able to calculate the delay between I/O chunks, the monotonic clock avail-

able via clock gettime() is used. The following code will initialize the timer:
30b 〈doio 29c〉+≡ (35d) / 30a 30c .

struct timespec ts;
if (clock_gettime(CLOCK_MONOTONIC, &ts) < 0) {

perror("CLOCK_MONOTONIC");
die("retrieving monotonic time failed", 0);

}
Uses die 17b.

If the -q flag has not been supplied, forscript will display a startup message
similar to script’s and write the same message to the transcript file. Note that this
behavior differs from script’s: When called with -q, script would not output the
startup message to the terminal, but record it to the typescript file nevertheless.
This is required because scriptreplay assumes that the first line in the typescript
is this startup message and will unconditionally suppress its output. forscript,
however, has no such limitation and will not write the startup line to the transcript
if the -q flag is set.

30c 〈doio 29c〉+≡ (35d) / 30b 31a .

if (!qflg)
statusmsg(STARTMSG);

Uses STARTMSG 30d and statusmsg 18c.

30d 〈constants 14a〉+≡ (34f) / 14b 34c .

const char *STARTMSG = "forscript started on %s, "
"file is %s\r\n";

Defines:
STARTMSG, used in chunk 30c.

30

The main loop, which handles input and output, will run until the child process
exits.

31a 〈doio 29c〉+≡ (35d) / 30c 31b .

while ((CHILD > 0) || drain) {
Uses CHILD 27a.

Since select() manipulates the value of fds, it has to be initialized again in each
iteration. First its value is cleared, then the file descriptors for standard input and
the PTY’s master are added to the set, then select() is called to wait until one of
the file descriptors has data to read available. When in drain mode, select() may
not be called to avoid blocking.

31b 〈doio 29c〉+≡ (35d) / 31a 31c .

if (!drain) {
FD_ZERO(&fds);
FD_SET(STDIN_FILENO, &fds);
FD_SET(PTM, &fds);
sr = select(highest, &fds, NULL, NULL, NULL);

Uses PTM 22d.
If the child process has terminated, there may still be data left in the buffers,

therefore the terminal’s file descriptor is set to non-blocking mode. Reading will
then continue until no more data can be retrieved. If drain mode is already active,
this code will not be executed.

31c 〈doio 29c〉+≡ (35d) / 31b 31d .

if (CHILD < 0) {
int flags = fcntl(PTM, F_GETFL);
if (fcntl(PTM, F_SETFL, (flags | O_NONBLOCK)) == 0) {

drain = 1;
continue;

}
}

Uses CHILD 27a and PTM 22d.
If select returns 0 or less, none of the file descriptors are ready for reading. This can

for example happen if a signal was received and should be ignored. If the signal was
SIGCHLD, notifying the parent thread of the child’s termination, the signal handler
will have set CHILD to −1 and the loop will finish after the buffers have been drained.
If drain mode is already active, select() will not have been run, therefore this test
is not needed then.

31d 〈doio 29c〉+≡ (35d) / 31c 32a .

if (sr <= 0)
continue;

31

Execution does not reach this point if none of the file descriptors had data avail-
able. Thus it can be assumed that data will be written to the transcript file. There-
fore chunk16() is called to calculate and write a delay meta chunk. After it has
calculated the time delta, it will automatically update ts to contain the current
time.

32a 〈doio 29c〉+≡ (35d) / 31d 32b .

if (chunk16(&ts) < 0)
die(NULL, 0x16);

Uses chunk16 12 and die 17b.
If user input is available, it will be read into the buffer. The data will then be

written to the transcript file, having SO prepended and SI appended. Then it will
be sent to the client application. When in drain mode, user input is irrelevant since
the child has already terminated.

32b 〈doio 29c〉+≡ (35d) / 32a 32c .

if (FD_ISSET(STDIN_FILENO, &fds)) {
count = read(STDIN_FILENO, iobuf, BUFSIZ);
if (count > 0) {

fwrite(&SO, sizeof(SO), 1, OUTF);
chunkwd((unsigned char *)iobuf, count);
fwrite(&SI, sizeof(SI), 1, OUTF);
write(PTM, iobuf, count);

}
}

Uses chunkwd 15a, OUTF 15b, PTM 22d, SI 14a, and SO 14a.
Regardless of whether in drain mode or not, if output from the client application

is available, it will be read into the buffer and written to the transcript file and
standard output. If there was no data to read, the buffer has been drained, drain
mode ends and the main loop will terminate.

32c 〈doio 29c〉+≡ (35d) / 32b 33a .

} // if (!drain)
if (FD_ISSET(PTM, &fds)) {

count = read(PTM, iobuf, BUFSIZ);
if (count > 0) {

fwrite(iobuf, sizeof(char), count, OUTF);
write(STDOUT_FILENO, iobuf, count);

} else
drain = 0;

}
Uses OUTF 15b and PTM 22d.

32

If the -f flag has been specified on the command line, the file should be flushed
now that data has been written.

33a 〈doio 29c〉+≡ (35d) / 32c 33b .

if (fflg)
fflush(OUTF);

Uses OUTF 15b.
If the main loop exits, the child has terminated. done() is called to flush data

and tidy up the environment.
33b 〈doio 29c〉+≡ (35d) / 33a

}
done();

}
Uses done 33e.

4.10 Finishing Execution
Since a signal handler can handle more than one signal, its number is passed as
an argument. However, finish() only handles SIGCHLD, therefore it will ignore its
argument. Its only task is setting CHILD to −1, which will cause the main loop to
exit as soon as possible.

33c 〈finish 33c〉≡ (35c)
void finish(int signal) {

UNUSED(signal);
CHILD = -1;

}
Defines:

finish, used in chunk 26a.
Uses CHILD 27a and UNUSED 33d.

UNUSED is a macro that causes the compiler to stop warning about an unused
parameter:

33d 〈macros 33d〉≡ (34e)
#define UNUSED(var) while (0) { (void)(var); }

Defines:
UNUSED, used in chunks 25a and 33c.
The function done() is called as soon as the main loop terminates. It cleans up

the environment, resets the terminal and finishes execution. First, it has to fetch
the exit status of the child process using wait().

33e 〈done 33e〉≡ (35b) 34b .

void done() {
int status;
wait(&status);

Defines:
done, used in chunks 33b and 34c.

33

To be able to use wait(), wait.h must be included.
34a 〈includes 8b〉+≡ (34e) / 29b

#include <sys/wait.h>
If the -q flag has not been supplied, forscript will write a shutdown message to

both the terminal and the transcript file.
34b 〈done 33e〉+≡ (35b) / 33e 34d .

if (!qflg)
statusmsg(STOPMSG);

Uses statusmsg 18c and STOPMSG 34c.

34c 〈constants 14a〉+≡ (34f) / 30d
const char *STOPMSG = "forscript done on %s, "

"file is %s\r\n";
Defines:

STOPMSG, used in chunk 34b.
Uses done 33e.

Finally, it will write an end of session chunk, close open file descriptors, reset the
terminal and exit.

34d 〈done 33e〉+≡ (35b) / 34b
if (chunk03(status) < 0)

die(NULL, 0x03);
fclose(OUTF);
close(PTM);
close(PTS);
if (tcsetattr(STDIN_FILENO, TCSADRAIN, &TT) < 0) {

perror("tcsetattr on exit");
die("tcsetattr on exit failed", 0);

}
exit(EXIT_SUCCESS);

}
Uses chunk03 9a, die 17b, OUTF 15b, and PTM 22d.

4.11 Putting It All Together
The code contained in the last sections is assembled into a single C source file,
starting with feature test macros, ordinary macros and include statements.

34e 〈forscript.c 34e〉≡ 34f .

〈featuretest 21c〉
〈macros 33d〉
〈includes 8b〉
Afterwards, constants and global variables are defined.

34f 〈forscript.c 34e〉+≡ / 34e 35a .

〈constants 14a〉
〈globals 15b〉

34

The functions used in the code are put in an order that makes sure every function
is defined before it is called. Since die() is required at many places, it is put first.
Next, all the chunk writing functions appear (the helper functions first).

35a 〈forscript.c 34e〉+≡ / 34f 35b .

〈die 17b〉
〈swrite 16a〉
〈chunkw 15a〉
〈chunkwhf 16c〉
〈chunkwm 17a〉
〈chunks 7〉
The code continues with the startup and shutdown functions.

35b 〈forscript.c 34e〉+≡ / 35a 35c .

〈statusmsg 18c〉
〈done 33e〉
Next, the signal handlers.

35c 〈forscript.c 34e〉+≡ / 35b 35d .

〈finish 33c〉
〈winsize 25b〉
〈resized 25a〉
The two functions that represent the parent and child processes are defined next.

35d 〈forscript.c 34e〉+≡ / 35c 35e .

〈doshell 27c〉
〈doio 29c〉
Finally, the main() function decides the order in which the steps described in this

chapter are executed. Since neither the parent nor the child process should ever
reach the end of main(), it returns EXIT FAILURE.

35e 〈forscript.c 34e〉+≡ / 35d
int main(int argc, char *argv[]) {
〈setmyname 18d〉
〈getopt 19b〉
〈openoutfile 21a〉
〈openpt 23b〉
〈sigchld 26a〉
〈fork 26c〉
return EXIT_FAILURE;

}
Defines:

main, never used.

35

5 Evaluation
In order to show you what the code you have just seen actually does, this section
contains instructions on how to compile it, and it features an example transcript file
analyzed in detail.

5.1 Compiling forscript
forscript is written conforming to the C99 and POSIX-1.2001 standards, with
portability in mind. It has been developed on a machine running Linux [7] 2.6.32,
using glibc [8] 2.10 and GCC [9] 4.4.3. The following command line is an example
of how to compile forscript:

gcc -std=c99 -Wl,-lrt -g -o forscript -Wall \
-Wextra -pedantic -fstack-protector-all -pipe forscript.c

To generate forscript.c out of the noweb source code, the following command
line can be used:

notangle -Rforscript.c thesis.nw > forscript.c

On the author’s machine, forscript can be compiled without any compiler warn-
ings. It has also been successfully compiled on NetBSD.

Since Apple Mac OS X in its current version 10.6.2 lacks support for the real-time
extension of POSIX, the clock gettime() function required by forscript is not
natively available. Therefore the code described in this thesis can in its current
state not be compiled on OS X. However, it should be possible to create a function
emulating clock gettime() and then port forscript to OS X.

5.2 Example Transcript File
To demonstrate forscript’s output, the following pages contain a commented hex
dump of a transcript file created on the author’s machine. The dump has been
created using hexdump -C transcript. Since metadata chunks do not necessarily
start or end at a 16-byte border, the dump has been cut into distinct pieces, bytes
not belonging to the current logical unit being replaced by whitespace. The hex
dump consists of several three-colum lines. The first two columns contain 16 bytes of
data represented in hexadecimal form, eight bytes each. The third column represents
these 16 bytes interpreted as ASCII characters, nonprintable characters are replaced
with a single dot.

The transcript starts with a file version chunk, specifying that version 1 is used:

0e 0e 01 01 0f |..... |

Then a start of session chunk follows.

0e 0e 02 4b 82 d0 f3 04 4d 8b e3 | ...K....M..|
00 3c 0f |.<. |

Its first eight bytes, (4b to e3) tell you that the time is 1266864371.072190947
seconds after the epoch, which is February 22, 2010, 18:46:11 UTC. The next two
bytes, 00 3c represent a timezone of 60 which translates to UTC+01:00.

After this chunk, the environment variables are listed. These are name=value
pairs, separated by null bytes. This information is important to interpret the actual

36

terminal data: For example, different control codes are used depending on the TERM
variable’s setting.

0e 0e 12 53 53 48 5f 41 47 45 4e 54 5f | ...SSH_AGENT_|
50 49 44 3d 31 36 33 30 00 47 50 47 5f 41 47 45 |PID=1630.GPG_AGE|
4e 54 5f 49 4e 46 4f 3d 2f 74 6d 70 2f 67 70 67 |NT_INFO=/tmp/gpg|
2d 4b 50 62 79 65 43 2f 53 2e 67 70 67 2d 61 67 |-KPbyeC/S.gpg-ag|
65 6e 74 3a 31 36 33 31 3a 31 00 54 45 52 4d 3d |ent:1631:1.TERM=|
72 78 76 74 00 53 48 45 4c 4c 3d 2f 62 69 6e 2f |rxvt.SHELL=/bin/|
62 61 73 68 00 57 49 4e 44 4f 57 49 44 3d 32 37 |bash.WINDOWID=27|
32 36 32 39 38 34 00 55 53 45 52 3d 73 63 79 00 |262984.USER=scy.|
53 53 48 5f 41 55 54 48 5f 53 4f 43 4b 3d 2f 74 |SSH_AUTH_SOCK=/t|
6d 70 2f 73 73 68 2d 64 63 74 77 4b 42 31 36 30 |mp/ssh-dctwKB160|
37 2f 61 67 65 6e 74 2e 31 36 30 37 00 50 41 54 |7/agent.1607.PAT|
48 3d 2f 68 6f 6d 65 2f 73 63 79 2f 62 69 6e 3a |H=/home/scy/bin:|
2f 75 73 72 2f 6c 6f 63 61 6c 2f 62 69 6e 3a 2f |/usr/local/bin:/|
75 73 72 2f 62 69 6e 3a 2f 62 69 6e 3a 2f 75 73 |usr/bin:/bin:/us|
72 2f 67 61 6d 65 73 00 50 57 44 3d 2f 68 6f 6d |r/games.PWD=/hom|
65 2f 73 63 79 00 4c 41 4e 47 3d 65 6e 5f 55 53 |e/scy.LANG=en_US|
2e 55 54 46 2d 38 00 43 4f 4c 4f 52 46 47 42 47 |.UTF-8.COLORFGBG|
3d 37 3b 64 65 66 61 75 6c 74 3b 30 00 48 4f 4d |=7;default;0.HOM|
45 3d 2f 68 6f 6d 65 2f 73 63 79 00 53 48 4c 56 |E=/home/scy.SHLV|
4c 3d 32 00 4c 4f 47 4e 41 4d 45 3d 73 63 79 00 |L=2.LOGNAME=scy.|
57 49 4e 44 4f 57 50 41 54 48 3d 37 00 44 49 53 |WINDOWPATH=7.DIS|
50 4c 41 59 3d 3a 30 2e 30 00 43 4f 4c 4f 52 54 |PLAY=:0.0.COLORT|
45 52 4d 3d 72 78 76 74 2d 78 70 6d 00 5f 3d 75 |ERM=rxvt-xpm._=u|
6e 69 2f 62 61 63 68 65 6c 6f 72 2f 66 6f 72 73 |ni/bachelor/fors|
63 72 69 70 74 00 0f |cript.. |

The next chunk contains the locale settings the C library uses for messages, num-
ber and currency formatting and other things. Although the user may choose dif-
ferent locales for either category, they are usually all the same. This example makes
no difference: The system is configured for US English and a character encoding of
UTF-8.

0e 0e 13 65 6e 5f 55 53 2e | ...en_US.|
55 54 46 2d 38 00 65 6e 5f 55 53 2e 55 54 46 2d |UTF-8.en_US.UTF-|
38 00 65 6e 5f 55 53 2e 55 54 46 2d 38 00 65 6e |8.en_US.UTF-8.en|
5f 55 53 2e 55 54 46 2d 38 00 65 6e 5f 55 53 2e |_US.UTF-8.en_US.|
55 54 46 2d 38 00 65 6e 5f 55 53 2e 55 54 46 2d |UTF-8.en_US.UTF-|
38 00 65 6e 5f 55 53 2e 55 54 46 2d 38 00 0f |8.en_US.UTF-8.. |

The terminal forscript is running in is 168 characters wide (00 a8) and 55
characters high (00 37), as the terminal size chunk shows:

0e | .|
0e 11 00 a8 00 37 0f |.....7. |

After all these metadata chunks, this is where actual terminal output starts. Since
the -q flag was not used, forscript writes a startup message both to the terminal
and the transcript, containing date and time and the file name. The final two bytes
0d 0a represent the control codes carriage return and line feed. Note that in contrast
to the Unix convention of using just line feed (\n) to designate “new line” in text

37

files, a terminal (or at least the terminal the author’s machine is using) requires
both bytes to be present.

66 6f 72 73 63 72 69 70 74 | forscript|
20 73 74 61 72 74 65 64 20 6f 6e 20 4d 6f 6e 20 | started on Mon |
32 32 20 46 65 62 20 32 30 31 30 20 30 37 3a 34 |22 Feb 2010 07:4|
36 3a 31 31 20 50 4d 20 43 45 54 2c 20 66 69 6c |6:11 PM CET, fil|
65 20 69 73 20 74 72 61 6e 73 63 72 69 70 74 0d |e is transcript.|
0a |. |

Now the shell is started. It requires some time to read its configuration files
and initialize the environment, therefore forscript has to wait for it and starts
measuring the time until the next piece of data arrives. After the shell has initialized,
it prints out its prompt. On this machine, the prompt (scy@bijaz ˜ master ?
0.11 19:46 $) is a rather complicated, colored one and therefore contains lots of
ISO 6429 control codes (also known as “ANSI escape codes”) to define the visual
appearance.

However, before the prompt is written to the data file, forscript writes a delay
meta chunk: It took 0.065087679 seconds before the prompt was printed.

0e 0e 16 00 00 00 00 03 e1 28 bf 0f 1b 5d 30 |(...]0|
3b 73 63 79 40 62 69 6a 61 7a 3a 7e 07 1b 5b 31 |;scy@bijaz:˜..[1|
3b 33 32 6d 73 63 79 1b 5b 30 3b 33 32 6d 40 1b |;32mscy.[0;32m@.|
5b 31 3b 33 32 6d 62 69 6a 61 7a 1b 5b 31 3b 33 |[1;32mbijaz.[1;3|
34 6d 20 7e 20 1b 5b 30 3b 33 36 6d 6d 61 73 74 |4m ˜ .[0;36mmast|
65 72 20 3f 20 1b 5b 31 3b 33 30 6d 30 2e 31 31 |er ? .[1;30m0.11|
20 1b 5b 30 3b 33 37 6d 31 39 3a 34 36 20 1b 5b | .[0;37m19:46 .[|
30 3b 33 33 6d 1b 5b 31 3b 33 32 6d 24 1b 5b 30 |0;33m.[1;32m$.[0|
6d 20 |m |

Next, 1.291995750 seconds after the prompt has been printed, the user types the
letter e on the keyboard. The letter is enclosed by 0e and 0f in order to mark it as
input data.

0e 0e 16 00 00 00 01 11 67 80 66 0f 0e 65 |mg.f..e|
0f |. |

After the letter has been typed, the kernel will usually echo the character, that is,
put it into the terminal’s output stream to make it appear on screen. It will take a
small amount of time (in this case 0.0079911 seconds) until forscript receives the
character and write it to the transcript file, this time declaring it as output.

0e 0e 16 00 00 00 00 00 79 ef 3c 0f 65 |y.<.e |

The user now continues to type the characters echo -l, which will be echoed as
well.

0e 0e | ..|
16 00 00 00 00 05 b9 48 10 10 0f 0e 63 0f 0e 0e |.......H....c...|
16 00 00 00 00 00 79 a5 09 0f 63 0e 0e 16 00 00 |......y...c.....|
00 00 0a 7d bf 1e 0f 0e 68 0f 0e 0e 16 00 00 00 |...}....h.......|
00 00 79 db 51 0f 68 0e 0e 16 00 00 00 00 0b 71 |..y.Q.h........q|
c4 94 0f 0e 6f 0f 0e 0e 16 00 00 00 00 00 79 fc |....o.........y.|
54 0f 6f 0e 0e 16 00 00 00 02 09 89 aa a1 0f 0e |T.o.............|

38

20 0f 0e 0e 16 00 00 00 00 00 79 f2 83 0f 20 0e |y... .|
0e 16 00 00 00 01 2f 35 2a bc 0f 0e 2d 0f 0e 0e |....../5*...-...|
16 00 00 00 00 00 79 bb 20 0f 2d 0e 0e 16 00 00 |......y. .-.....|
00 00 14 fb 28 4d 0f 0e 6c 0f 0e 0e 16 00 00 00 |....(M..l.......|
00 00 7a 01 3d 0f 6c 0e 0e 16 00 00 00 00 2b 64 |..z.=.l.......+d|
b7 45 0f |.E. |

Since typing the l was a mistake, the user presses the “backspace” key (ASCII
value 127) to remove the last character.

0e 7f 0f | ... |

After the usual delay, the shell will send two things to the terminal: First, an
ASCII backspace character (08) to position the cursor on the l, then the ANSI code
CSI K, represented by the bytes 1b 5b 4b, which will cause the terminal to make
all characters at or right of the cursor’s position disappear.

0e 0e 16 00 00 00 00 00 79 c2 |y.|
7e 0f 08 1b 5b 4b |˜...[K |

The user now enters the letter n and hits the return key (represented as ASCII
byte 0d) in order to execute the command echo -n. After executing the command
(which produces no output), the shell displays the prompt again.

0e 0e 16 00 00 00 00 37 50 74 |7Pt|
a3 0f 0e 6e 0f 0e 0e 16 00 00 00 00 00 79 c4 67 |...n.........y.g|
0f 6e 0e 0e 16 00 00 00 00 2e bb 20 01 0f 0e 0d |.n.........|
0f 0e 0e 16 00 00 00 00 00 79 f9 df 0f 0d 0a 0e |.........y......|
0e 16 00 00 00 00 02 25 be d3 0f 1b 5d 30 3b 73 |.......%....]0;s|
63 79 40 62 69 6a 61 7a 3a 7e 07 1b 5b 31 3b 33 |cy@bijaz:˜..[1;3|
32 6d 73 63 79 1b 5b 30 3b 33 32 6d 40 1b 5b 31 |2mscy.[0;32m@.[1|
3b 33 32 6d 62 69 6a 61 7a 1b 5b 31 3b 33 34 6d |;32mbijaz.[1;34m|
20 7e 20 1b 5b 30 3b 33 36 6d 6d 61 73 74 65 72 | ˜ .[0;36mmaster|
20 3f 20 1b 5b 31 3b 33 30 6d 30 2e 31 30 20 1b | ? .[1;30m0.10 .|
5b 30 3b 33 37 6d 31 39 3a 34 36 20 1b 5b 30 3b |[0;37m19:46 .[0;|
33 33 6d 1b 5b 31 3b 33 32 6d 24 1b 5b 30 6d 20 |33m.[1;32m$.[0m |

Note that without recording the user’s input, it would be impossible to determine
whether the user pressed return to actually run the command or whether entering
the command was cancelled, for example by pressing ˆC.

1.587984366 seconds later, the user decides to end the current session by pressing
ˆD, which is equivalent to the byte value 04.

0e 0e 16 00 00 00 01 23 0b ed ee 0f 0e 04 0f |.......#....... |

The shell reacts by printing exit and terminating. Then, forscript prints its
shutdown message.

65 | e|
78 69 74 0d 0a 66 6f 72 73 63 72 69 70 74 20 64 |xit..forscript d|
6f 6e 65 20 6f 6e 20 4d 6f 6e 20 32 32 20 46 65 |one on Mon 22 Fe|
62 20 32 30 31 30 20 30 37 3a 34 36 3a 32 31 20 |b 2010 07:46:21 |
50 4d 20 43 45 54 2c 20 66 69 6c 65 20 69 73 20 |PM CET, file is |
74 72 61 6e 73 63 72 69 70 74 0d 0a |transcript.. |

39

Finally, the exit status (0) of the shell is recorded in an end of session metadata
chunk and the transcript file ends.

0e 0e 03 00 ||
0f |.|

6 Summary
In this thesis it has been presented why script, although often used for forensic
investigations, lacks features that are crucial for reliable documentation. A new
software, forscript, has been designed and implemented, the weaknesses of script
have been eliminated.

6.1 Future Tasks
The primary reason to develop forscript was the need to create a software that
enables a forensic investigator to convert an interactive command-line session into
a version suitable for inclusion in a printed report. While thinking about possible
approaches, it became apparent that the output generated by script does not suffice
to provide such a software with the information it needs to unambigously reconstruct
what the user did. A tool that records the required information had to be developed
first. This task has been solved in this bachelor thesis. Next, a tool that is able to
parse the output forscript generates is to be written.

forscript will be released by the author as free software, available at [10]. Cor-
rections and improvements are encouraged: forscript is far from being perfect
and it is quite possible that during the development of additional tools, bugs and
shortcomings will need to be fixed.

Additionally, we will approach the maintainers of script and the forensic com-
munity as they can probably benefit from forscript’s existence.

40

References
[1] Casey, Eoghan: Digital Evidence and Computer Crime (2nd edition, 2004),

Academic Press, ISBN 978-0121631048.
[2] Knuth, Donald E.: Literate Programming (1992), Center for the Study of Lan-

guage and Information, ISBN 978-0937073803.
[3] Noweb — A simple, Extensible Tool for Literate Programming, created and

maintained by Norman Ramsey, current release 2.11b.
http://www.cs.tufts.edu/˜nr/noweb/

[4] The util-linux project, no longer maintained, last release 2.13-pre7 in 2006.
http://www.kernel.org/pub/linux/utils/util-linux/

[5] The util-linux-ng project, maintained by Karel Zak, current release 2.17.
http://userweb.kernel.org/˜kzak/util-linux-ng/

[6] The Linux man-pages project, maintained by Michael Kerrisk, release 3.23.
http://www.kernel.org/doc/man-pages/

[7] The Linux kernel, maintained by Linus Torvalds, release 2.6.31.
http://www.kernel.org/

[8] GNU C Library, maintained by Ulrich Drepper, release 2.10.
http://www.gnu.org/software/libc/

[9] GNU Compiler Collection, maintained by its steering committee, release 4.4.3.
http://gcc.gnu.org/

[10] forscript, created and maintained by Tim Weber, release 1.0.0.
http://scytale.name/proj/forscript/

41

http://www.cs.tufts.edu/~nr/noweb/
http://www.kernel.org/pub/linux/utils/util-linux/
http://userweb.kernel.org/~kzak/util-linux-ng/
http://www.kernel.org/doc/man-pages/
http://www.kernel.org/
http://www.gnu.org/software/libc/
http://gcc.gnu.org/
http://scytale.name/proj/forscript/

	Introduction
	Background: Computer Forensics
	Tasks
	Results
	Outlook on the Thesis

	script
	Purpose
	Mode of Operation
	Invocation
	File Formats
	Typescript
	Timing

	Disadvantages

	Design of forscript
	File Format
	Input Chunks
	Metadata Chunks
	Properties of the File Format

	Metadata Chunk Types
	Magic Number
	Invocation

	Implementation of forscript
	Constants
	Writing Metadata Chunks to Disk
	Error Handling
	Startup and Shutdown Messages
	Initialization
	Determining the Binary’s Name
	Command Line Arguments
	Opening the Output File

	Preparing a New Pseudo Terminal
	Managing Window Size

	Launching Subprocesses
	Running the Target Application
	Handling Input and Output
	Finishing Execution
	Putting It All Together

	Evaluation
	Compiling forscript
	Example Transcript File

	Summary
	Future Tasks

